

US006724143B2

(12) **United States Patent**
Chen et al.

(10) **Patent No.:** US 6,724,143 B2
(45) **Date of Patent:** Apr. 20, 2004

(54) **PACKAGING STRUCTURE FOR A DISPLAY DEVICE**

(75) Inventors: **Lai-Cheng Chen**, Hsinchu (TW);
Wen-Tsang Liu, Taipei (TW);
Ping-Song Wang, Taipei Hsien (TW);
Chun-Hui Tsai, Hsinchu (TW)

(73) Assignee: **Delta Optoelectronics, Inc.**, Hsin-Chu (TW)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: **10/153,794**

(22) Filed: **May 24, 2002**

(65) **Prior Publication Data**

US 2003/0107315 A1 Jun. 12, 2003

(30) **Foreign Application Priority Data**

Dec. 10, 2001 (TW) 90130530 A
(51) **Int. Cl.**⁷ **H05B 33/04**
(52) **U.S. Cl.** **313/512; 313/506; 428/690**
(58) **Field of Search** 313/512, 511, 313/504, 506; 428/690, 917; 445/25, 44; 257/433, 787, 788, 790, 794; 277/650

(56)

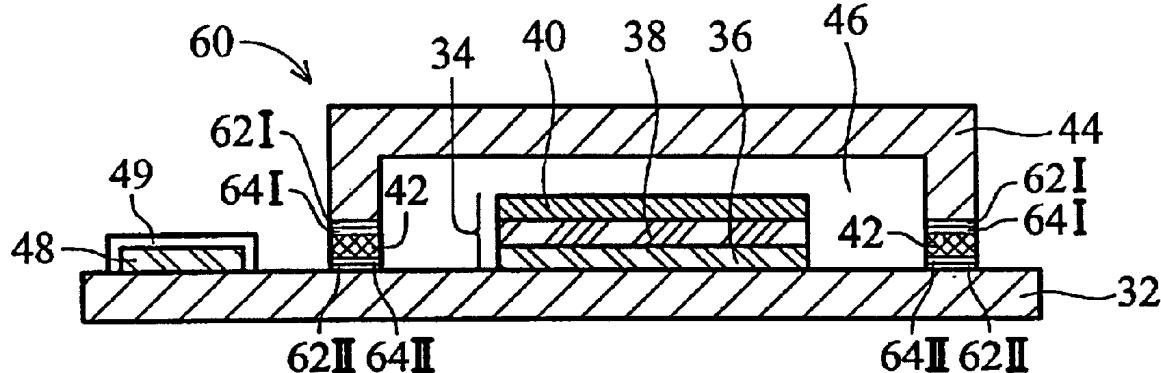
References Cited

U.S. PATENT DOCUMENTS

5,874,804 A	*	2/1999	Rogers	313/512
6,210,815 B1	*	4/2001	Ooishi	428/690
6,589,675 B2	*	7/2003	Peng	428/690
2003/0062830 A1	*	4/2003	Guenther et al.	313/512

* cited by examiner

Primary Examiner—Nimeshkumar D. Patel


Assistant Examiner—K. Guharay

(74) *Attorney, Agent, or Firm*—Birch, Stewart, Kolasch & Birch, LLP

(57) **ABSTRACT**

A packaging structure for an OLED/PLED device. The packaging structure has a glass substrate on which a luminescent element is completed, and a sealing cap bonded to the rim of the glass substrate so as to seal the luminescent element within an airtight space. Also, a sealing agent is disposed between the rims of the sealing cap and the glass substrate, wherein the sealing agent is an alloy with a low eutectic point about 100~300° C.

18 Claims, 5 Drawing Sheets

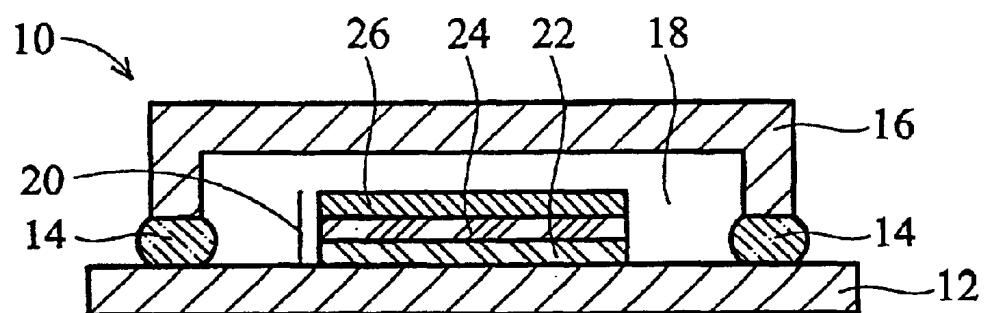


FIG. 1 (PRIOR ART)

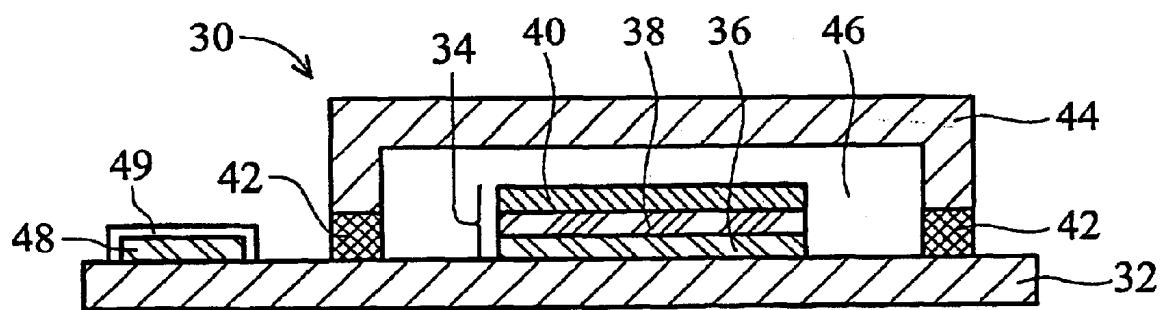


FIG. 2

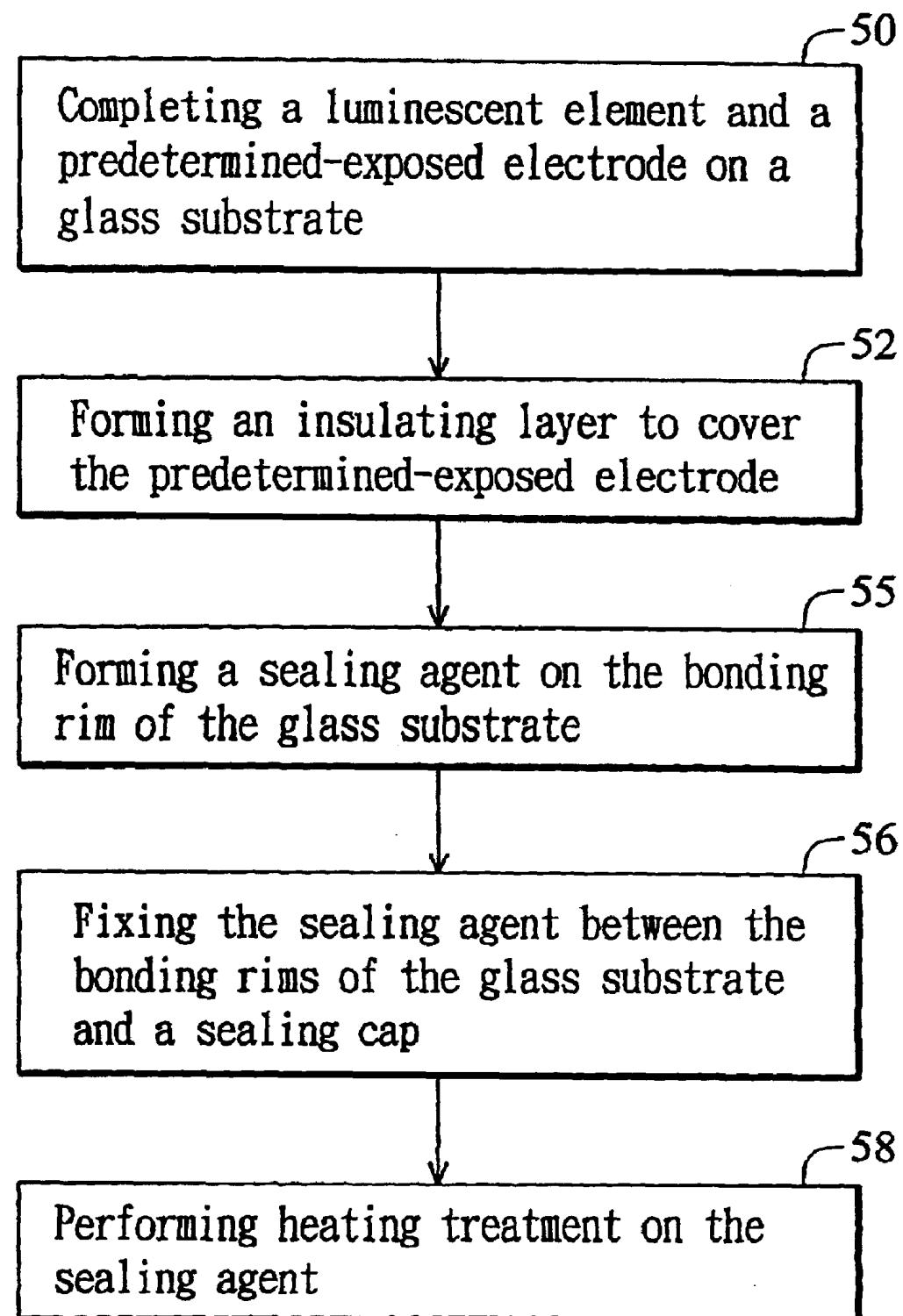


FIG. 3

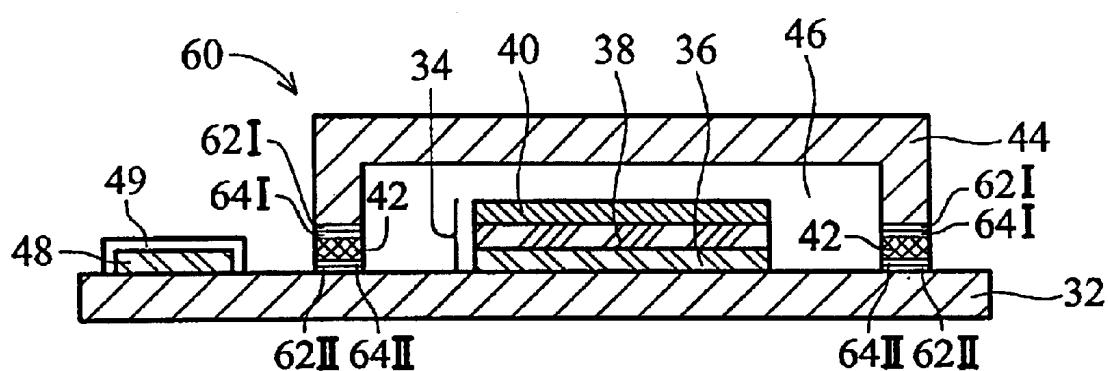


FIG. 4

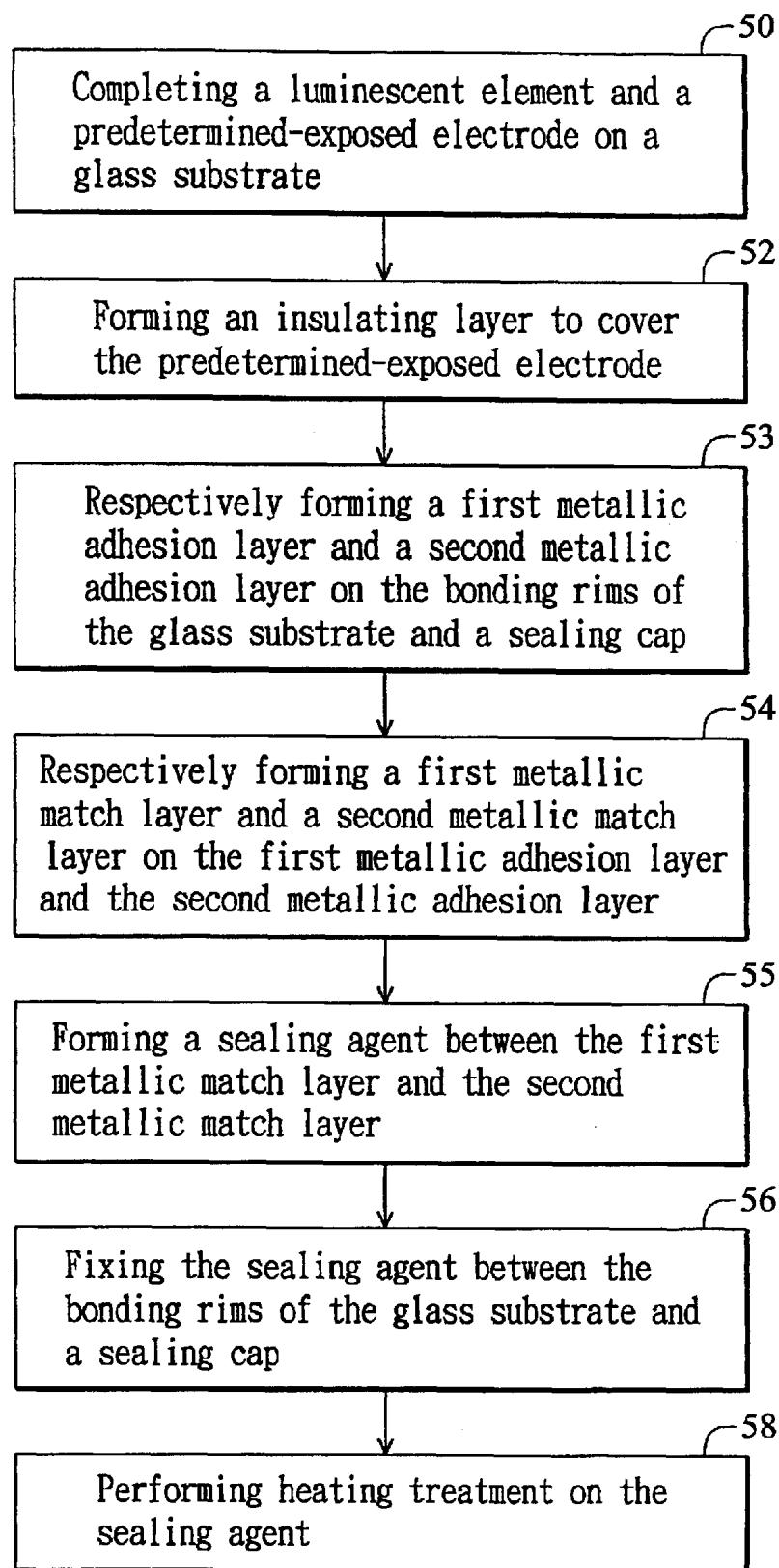


FIG. 5

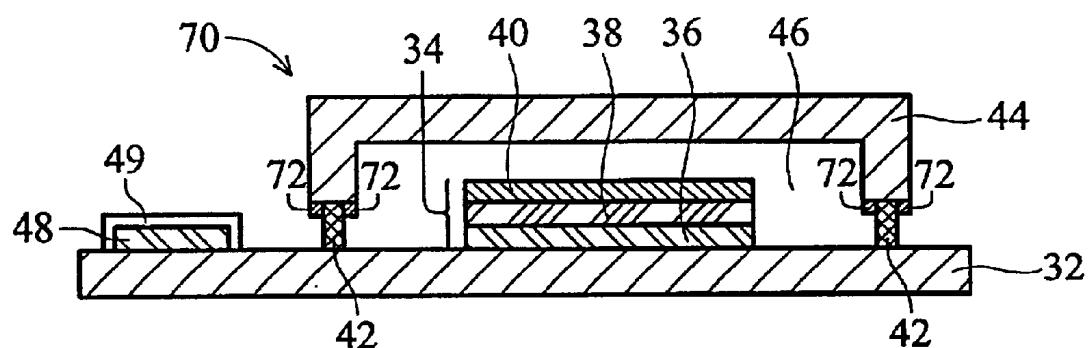


FIG. 6A

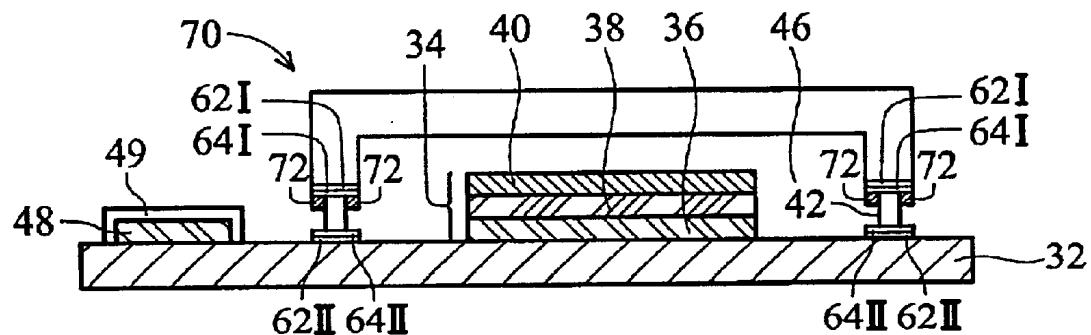


FIG. 6B

PACKAGING STRUCTURE FOR A DISPLAY DEVICE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a packaging process for a display device and, more particularly, to a packaging structure for an OLED/PLED device.

2. Description of the Related Art

In an organic electro-luminescence (EL) element used for new-generation panel display devices, such as organic light emitting diode (OLED) or polymer light emitting diode (PLED), electric current applied to specific organic luminescent materials transforms electricity into luminosity. The OLED/PLED device has the advantages of thin profile, light weight, high luminescent efficiency, and low driving voltage. However, as the duration of use increases, the likelihood of moisture and oxygen permeating the organic EL element also increases, causing detachment between the organic luminescent layer and the cathode electrode, cracking of the organic materials, and oxidation of the electrodes. As a result, a so-called 'dark spot', to which electricity is not supplied, is generated, decreasing luminescence and luminescent uniformity.

In order to prevent the internal space of the organic EL element from developing a high humidity condition, a sealing cap is commonly used to package the glass substrate on which metal electrodes and the organic luminescent layer are completed. Also, various technologies reducing the interior humidity have been developed, such as forming photo-hardened resin on the glass substrate, plating metal oxide, fluoride or sulfide on the glass substrate, forming a water-resistant film on the glass substrate, and using an airtight case to package the organic EL element. Nevertheless, other problems, such as leakage current, crosstalk and oxide dissolution, remain to be solved.

FIG. 1 is a sectional diagram showing a packaging structure for an OLED/PLED device according to the prior art. An organic EL element 10 comprises a glass substrate 12, a sealing agent 14 formed on the rim of the glass substrate 12, and a sealing cap 16 bonded to the glass substrate 12 by the sealing agent 14. Thus, the internal space 18 formed by the glass substrate 12 and the sealing cap 16 becomes an airtight container. Also, in the internal space 18, the glass substrate 12 comprises a lamination body 20 formed by a cathode layer 26, an organic luminescent material layer 24 and an anode layer 22. The sealing cap 16 of metal or glass is slightly smaller than the glass substrate 12 to cover the lamination body and reveal predetermined electrodes for driving circuits of the packaging structure.

The sealing agent 14 is polymer agent, such as UV-cured resin, epoxy resin and acrylic resin used in packaging LCD devices. With regard to organic luminescent materials sensitive to oxygen, moisture and high temperature, the polymer agent has poor resistance to moisture in the internal space 18 and poor adhesion between the glass substrate 12 and the sealing cap 16. The epoxy resin commonly used in the sealing agent 14 is a gather-type polymer and needs specific functional groups to carry polymerization out and thus space in position to the polymerization becomes a channel for moisture and oxygen. Also, during polymerization, vias and free volume are formed to become another channel for moisture and oxygen. Therefore, epoxy resin containing a large amount of moisture cannot provide good water/oxygen-resistance ability and easily allows the

metal and organic luminescent material layer 24 to peel from the cathode layer 26.

Seeking to solve the problems caused by epoxy resin, a conventional method disposes a drying substance on the bottom of the sealing cap 16 and spaced from the lamination body 20 by an internal space 18 filled with dried inert gas. The drying substance comprises a solid compound, such as BaO, CaO, CaSO₄, and CaCl₂, which chemically absorbs moisture and maintains its solid state. When a large amount of BaO or CaO is added to the drying substance, the moisture absorbency of the drying substance is increased. Unfortunately, the moisture absorbency is limited when the thickness of the drying substance exceeds a critical value. Thus, a new method of packaging the organic EL element solving the aforementioned problems is called for.

SUMMARY OF THE INVENTION

The present invention provides a packaging structure for an OLED/PLED device, in which a sealing agent is an alloy with a low eutectic point to solve the conventional problems.

The packaging structure has a glass substrate on which a luminescent element is completed, and a sealing cap that is bonded to the rim of the glass substrate so as to seal the luminescent element within an airtight space. Also, a sealing agent is disposed between the rims of the sealing cap and the glass substrate, wherein the sealing agent is an alloy with a low eutectic point about 100–300°C.

Accordingly, it is a principal object of the invention to provide an alloy with a low eutectic point as the sealing agent to provide good adhesion between the glass substrate and the sealing cap in a low melting temperature.

It is another object of the invention to provide the sealing agent without any channel for moisture and oxygen.

Yet another object of the invention is to provide the sealing agent with good resistance to the permeation of water and oxygen from the atmosphere.

These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a sectional diagram showing a packaging structure for an OLED/PLED device according to the prior art.

FIG. 2 is a sectional diagram showing a packaging structure for an OLED/PLED device according to the first embodiment of the present invention.

FIG. 3 is a flow chart of a packaging method according to the first embodiment of the present invention.

FIG. 4 is a sectional diagram showing a packaging structure for an OLED/PLED device according to the second embodiment of the present invention.

FIG. 5 is a flow chart of a packaging method according to the second embodiment of the present invention.

FIGS. 6A and 6B are sectional diagrams showing a packaging structure for an OLED/PLED device according to the third embodiment of the present invention.

Similar reference characters denote corresponding features consistently throughout the attached drawings.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[First Embodiment]

FIG. 2 is a sectional diagram showing a packaging structure for an OLED/PLED device 30 according to the first

embodiment of the present invention. An OLED/PLED device **30** comprises a glass substrate **32**, a sealing agent **42** formed on the rim of the glass substrate **32**, and a sealing cap **44** bonded to the glass substrate **32** by the sealing agent **42**. Thus, the internal space **46** formed by the glass substrate **32** and the sealing cap **44** becomes an airtight container. Also, in the internal space **46**, the glass substrate **32** comprises a lamination body **34** that is formed by a cathode layer **40**, an organic luminescent material layer **38** and an anode layer **36**.

The sealing agent **42** is selected from soldering materials, such as mono metal, binary alloy or ternary alloy. The sealing agent **42** has a low eutectic point to provide good adhesion between the glass substrate **32** and the sealing cap **44** in a low melting temperature. Since heat treatment is necessary for the sealing agent **42**, a process of solidification from a liquid state can absolutely avoid the formation of continuous vias in the alloy. This ensures that no channel for moisture and oxygen is formed in the sealing agent **42** so as to provide good resistance to the permeation of water and oxygen from the atmosphere. Preferably, the alloy used to form the sealing agent **42** has a eutectic point between 100~300° C. For example, InSn (50~52% In-50~48% Sn) has a eutectic point at 120° C., PbSn has a eutectic point at 180° C., and Sn has a eutectic point at 230° C.

Further, the sealing cap **44** that may be metal or glass is slightly smaller than the glass substrate **32** to cover the lamination body **34** and reveal a predetermined-exposed electrode **48** used for driving circuits of the packaging structure. Moreover, in order to prevent the alloy used in the sealing agent **44** overflowing and electrically connecting to the electrode **48**, an insulating layer **49** is needed to cover the exposed surface of the electrode **48**. Preferably, the insulating layer **49** is SiO₂, TiO₂, Cr₂O₃ or any other metal oxide.

FIG. 3 is a flow chart of a packaging method according to the first embodiment of the present invention. First, at step **50**, the lamination body **34** and predetermined-exposed electrode **48** are completed on the glass substrate **32**. Then, at step **52**, the insulating layer **49** is deposited to cover the predetermined-exposed electrode **48**. Next, at step **55**, an alloy with a low eutectic point (such as InSn, PbSn or Sn) is provided in the form of foil, wire or glue on the bonding rim of the glass substrate **32**. The alloy with a low eutectic point serves as the sealing agent **42**, and the shape and size of the sealing agent **42** are design choices depending on the bonding requirements between the glass substrate **32** and the sealing cap **44**. Thereafter, at step **56**, a mold is used to fix the sealing agent **42** on the bonding rim between the glass substrate **32** and the sealing cap **44**. Finally, at step **58**, using a heat treatment, the display device **30** is put into an oven to melt the sealing agent **42** at a low temperature about 100~300° C. This completes packaging of the internal elements of the OLED/PLED device **30**.

[Second Embodiment]

FIG. 4 is a sectional diagram showing a packaging structure for an OLED/PLED device **60** according to the second embodiment of the present invention. To improve the tightness of the packaging structure described in the first embodiment, the second embodiment further provides a first metallic adhesion layer **62I** and a first metallic match layer **64I** between the sealing cap **44** and the sealing agent **42**, and a second metallic adhesion layer **62II** and a second metallic match layer **64II** between the glass substrate **32** and the sealing agent **42**. The metallic adhesion layer **62** is used to improve the adhesion between an alloy with a low eutectic point and glass, and is preferably selected from Cr, Ti, Ta, V or Mo. The metallic match layer **64** is selected from various materials depending on the material used in the sealing agent

42. For example, when the sealing agent **42** is InSn, PbSn or Sn, the metallic match layer **64** is selected from metal or alloy commonly used in a vacuum, such as Au, Cu, Ni and Al. Also, the metallic match layer **64** may be oxide containing Cu, Al, Fe, Ni or Zr. When the sealing agent **42** is PbSn or tin alloy, the metallic match layer **64** may be a double-layered structure containing an Ag layer and a Ni layer.

FIG. 5 is a flow chart of a packaging method according to the second embodiment of the present invention. Compared with the steps in the first embodiment, the added steps in the second embodiment are step **53** and step **54**. At step **53**, the first metallic adhesion layer **62I** and the second metallic adhesion layer **62II** are respectively plated on the bonding rims of the sealing cap **44** and the glass substrate **32** after the formation of lamination body **34**, the predetermined-exposed electrode **48** and the insulating layer **49**. Then, at step **54**, the first metallic match layer **64I** and the second metallic match layer **64II** are respectively plated on the first metallic adhesion layer **62I** and the second metallic adhesion layer **62II**. Thereafter, at the steps **55**, the sealing agent **42** is disposed between the first metallic match layer **64I** and the second metallic match layer **64II**. Finally, the steps **56** and **58** are the same as described in first embodiment.

[Third Embodiment]

FIGS. 6A and 6B are sectional diagrams showing a packaging structure for an OLED/PLED device **70** according to the third embodiment of the present invention. Since InSn has a good wettability on non-metallic materials, InSn may adhere to the glass substrate **32** and sealing cap **44** and easily spread during high-temperature treatment. This causes undesired adhesion between sealing agent **42** and glass materials. Accordingly, the third embodiment provides a high-temperature durable material **72**, such as PI (polyimide), ceramics or glass, on the rim of the sealing case **44**. Preferably, the high-temperature durable material **72** is coated or printed to form a trench. Thus, the sealing agent **42** can be disposed within the trench of the high-temperature durable material **72** to prevent InSn from spreading at a high temperature. The size, shape and altitude of the trench formed in the high-temperature durable material **72** are design choices depending on the profile of the sealing agent **42**. FIG. 6A shows a first structure modified according to the first embodiment. FIG. 6B is a second structure modified according to the second embodiment.

It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

What is claimed is:

1. A packaging structure of a display device comprising: a glass substrate, wherein a luminescent element is completed on the internal surface of the glass substrate; a sealing cap, wherein the rim of the internal surface of the sealing cap is bonded to the bonding rim of the internal surface of the glass substrate so as to seal the luminescent element within an airtight space; a first metallic adhesion layer formed on the rim of the internal surface of the sealing cap; a first metallic match layer formed on the first metallic adhesion layer; a second metallic adhesion layer formed on the rim of the internal surface of the glass substrate; a second metallic match layer formed on the second metallic adhesion layer; and a sealing agent disposed between the bonding rims of the sealing cap and the glass substrate, wherein the sealing

5

agent is an alloy with a low eutectic point about 100–300° C., and the sealing agent is sandwiched between the first metallic match layer and the second metallic match layer.

2. The packaging structure according to claim 1, wherein the sealing agent is InSn.

3. The packaging structure according to claim 1, wherein the sealing agent is PbSn.

4. The packaging structure according to claim 1, wherein the sealing agent is Sn alloy.

5. The packaging structure according to claim 1, wherein the sealing cap is glass or metal.

6. The packaging structure according to claim 1, wherein the sealing agent is disposed between the first metallic match layer and the second metallic match layer.

7. The packaging structure according to claim 1, wherein the sealing agent is InSn, PbSn or Sn alloy, and each of the first metallic match layer and the second metallic match layer is Au, Cu, Ni, Al or other metal/alloy used in a vacuum.

8. The packaging structure according to claim 1, wherein the sealing agent is InSn, PbSn or Sn alloy, and each of the first metallic match layer and the second metallic match layer is oxide containing Cu, Al, Fe, Ni or Zr.

9. The packaging structure according to claim 1, wherein the sealing agent is PbSn or Sn alloy, and each of the first metallic match layer and the second metallic match layer is a double-layered structure containing a Ag layer and a Ni layer.

6

10. The packaging structure according to claim 1, wherein each of the first metallic adhesion layer and the second metallic adhesion layer is Cr, Ti, Ta, V or Mo.

11. The packaging structure according to claim 1, further comprising a trench on the rim of the internal surface of the sealing cap, wherein the trench is in opposition to the sealing agent.

12. The packaging structure according to claim 11, wherein the trench is surrounded by a high-temperature endurable material.

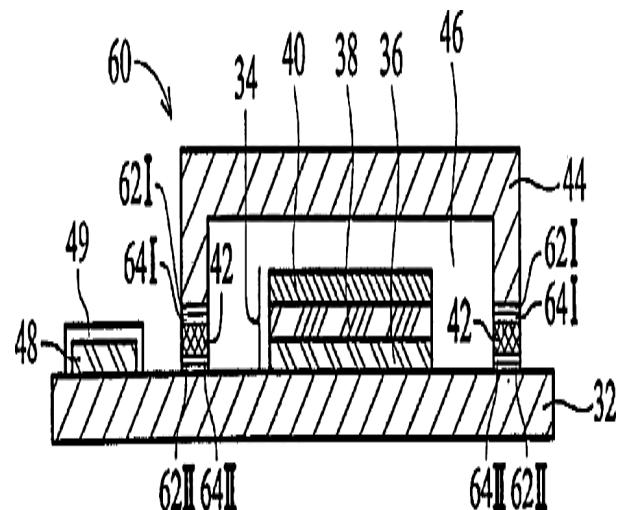
13. The packaging structure according to claim 12, wherein the high-temperature endurable material is polyimide, ceramic or glass.

14. The packaging structure according to claim 1, further comprising a predetermined-exposed electrode formed on the internal surface of the glass substrate and outside the airtight space.

15. The packaging structure according to claim 14, wherein the predetermined-exposed electrode is covered by an insulating layer.

16. The packaging structure according to claim 15, wherein the insulating layer is SiO₂, TiO₂, Cr₂O₃ or any other metallic oxide.

17. The packaging structure according to claim 1, wherein the display device is organic light emitting diode (OLED).


18. The packaging structure according to claim 1, wherein the display device is polymer light emitting diode (PLED).

* * * * *

专利名称(译)	显示装置的封装结构		
公开(公告)号	US6724143	公开(公告)日	2004-04-20
申请号	US10/153794	申请日	2002-05-24
[标]申请(专利权)人(译)	陈来成 刘文曾 王宋萍 TSAI春晖		
申请(专利权)人(译)	陈来成 刘文曾 王平，宋 TSAI春晖		
当前申请(专利权)人(译)	翰立光电，INC.		
[标]发明人	CHEN LAI CHENG LIU WEN TSANG WANG PING SONG TSAI CHUN HUI		
发明人	CHEN, LAI-CHENG LIU, WEN-TSANG WANG, PING-SONG TSAI, CHUN-HUI		
IPC分类号	H01L51/50 H01L51/52 H05B33/04		
CPC分类号	H01L51/5237 H01L51/5246		
优先权	090130530 2001-12-10 TW		
其他公开文献	US20030107315A1		
外部链接	Espacenet USPTO		

摘要(译)

一种OLED / PLED器件的封装结构。封装结构具有完成发光元件的玻璃基板和结合到玻璃基板的边缘以在气密空间内密封发光元件的密封帽。此外，密封剂设置在密封帽的边缘和玻璃基板之间，其中密封剂是具有低共晶点约100~300°C的合金。

